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Abstract 

 

In the history of mathematics, Goldbach Conjecture is the most famous and yet it is the most difficult problem 

in hands of number theory experts. For strong version, it states that every even natural number greater than two 

can be expressed as the sum of two prime numbers. The weak version of the same predicts that every odd number 

greater than five is sum of three prime numbers. The strong version has been validated for even numbers as high 

as 4 x 10^18. However, any comprehensive proof that the conjecture holds good for arbitrarily large even number 

does not exist. Here, we explore reasons why the task of proving the conjecture if not impossible, it is the most 

daunting challenge. Moreover, we present a scheme that allows to determine two primes whose sum is equal to 

chosen even number for any sufficiently large size even number.   
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         Abstract 

 

In the history of mathematics, Goldbach Conjecture is the most famous and yet it is the most difficult problem 

that can be solved by number theory experts. For strong version, it states that every even natural number greater 

than two can be expressed as the sum of two prime numbers. The weak version of the same predicts that every 

odd number greater than five is sum of three prime numbers. The strong version has been validated for even 

numbers as high as 4 x 10^18. However, any comprehensive proof that the conjecture holds good for arbitrarily 

large even number does not exist. Here, we explore reasons why the task of proving the conjecture if not 

impossible, it is the most daunting challenge. Moreover, we present a scheme that allows to determine two primes 

whose sum is equal to chosen even number for any sufficiently large size even number.   

 

1. Introduction 

We will begin with a historical note about Goldbach conjectures. Weak conjecture was conceived by Rene 

Descartes' before Christian Goldbach realized in 1742. But Descartes’ did not receive credit during his life-time. 

He was credited  in 1908 when his work was published in edition of Opuscula Posthuma.  However, Christan 

Goldbach, a Prussian  Mathematicians with his good fortune, was recognized for discovering both strong and 

weak conjecture  in 1742.  

 

Let us understand why proof of this seemingly simple conjecture turned out to be very difficult task. There 

are two main reasons: a. Gaps between successive primes increases when even numbers under consideration are 

very large. b. Also, prime count decreases between even numbers in range of consecutive multiples of powers of 

ten. In Table 1, we have summarized Prime count and average gap vs. numbers size upto 10^25, starting from 1. 

Also, in Figure 1and 2, we have graphed  data prime counting function (x) = x /log(x) [1] in log scale vs log x 

and average gap size vs log x. From the figures, it is clear that prime count increases with x but rate of increase 

decreases exponentially. However, average gap between consecutively higher value of primes increases linearly 

with x. The first reason implies that there are several even numbers between primes of very large size such as 

Mersenne Prime number [2] [3] M136279841 = 2^(136,279,841) – 1 and next higher prime number which is not 

discovered yet. This fact makes it harder to find two prime numbers that are sum of even number greater than 

M136279841. The second reason results increase of probability that decrease in prime count will cause vanishing 

(zero prime count increase) of primes at some values of x sufficiently high power of ten, as a limit case. Our 

reason is supported by evidence that maximum gap between successive prime numbers rises to as high as twenty-

five times the average gap value for x number equals 1020.  In Figure 3, we have plotted prime size x in powers 

of ten vs. maximum gap. The effects of these two reasons are a generalized proof of Goldbach Conjecture is not 



accepted by mathematics community. Therefore, we are presenting a scheme that ensures that even number of 

any size can be expressed as sum of two prime numbers.  

 

2. Preliminaries 

The Goldbach conjecture theoretically remains unproven despite exhaustive efforts to date [4]. Therefore, we 

are providing a simplified method that could lead us to a generalized proof of the conjecture. In order to achieve 

our objective, we shall utilize basic properties of integers and prime numbers. A common intuition suggest that 

any even number is a sum of two odd numbers. Further, based on pattern of prime numbers we can establish a 

fact that all prime numbers other than two are  odd numbers. Moreover, we will prove a unique property of all 

prime numbers. They are prime if all prime numbers smaller than square root of the prime can not divide the 

prime number exactly. We shall denote this proof as Prime Test Theorem (PTT).  

 

Theorem 1. Every even integer E is equal to sum of two odd integers A and B. 

 

Proof; Every even number is divisible by two. This implies that E  2 = N, N > 0 an integer 

           Therefore, E = 2N, where N is an even or odd number 

 Any odd number equals an even integer plus 1 

 Therefore, A = 2P + 1 and B = 2Q + 1, here P and Q are positive integers greater than 0 

 Adding A + B = 2P + 1 + 2Q + 1  we get 

                                   = 2P + 2Q + 2 

                                   = 2 ( P + Q + 1). Let N = (P + Q + 1) 

                                   = 2N. 

            We proved the theorem; any even number equals sum of two odd numbers. 

 

Theorem 2. P is a prime number if all prime numbers smaller than P can not divide P exactly.  

 

Proof: We will prove above theorem by a geometrical technique. An integer P  >  1 is prime if the number 

represents area of a rectangle with sides 1 and the number P itself only. We will refer it as a prime rectangle. 

For integers/rectangles with area other than Prime rectangle areas are called Composite area/rectangles. 

 

Case 1: If P is such that P is integer than P is composite number because p is a repeat factor of P. 

 

Case 2: If P is such that P is a mixed number than P may be composite representing area of a composite 

rectangle with sides M and N. Thus P = M  N, here M > 1  and N > 1 are integers. Further, if M < P 

implies that  N > P. Moreover, P = M  N implies that P mod (M) = 0 and P mod (N) = 0. This contradicts 

premise M and N can not divide exactly into P. From geometrical stand point there can be only one prime 

rectangle. Let us define M = {Pi…i = 3, …n}, Pn <  P. Therefore, for every M in set of prime numbers 

Pi < P if P mod (Pi)  0 then P must be prime. Thus, we have proved Prime Test Theorem.  

 



Corollary 1: All prime numbers greater than five ends with digits 1, 3, 7, and 9 in the least significant place. We 

can arrive at this conclusion because all prime numbers are odd. The smallest prime number two is a factor of all 

other even numbers. Also, number five is a factor of numbers ending with a five or a zero.  

Corollary 2: All prime numbers composed of second and higher powers of every prime number are composite 

numbers. 

Corollary 3: Any two prime numbers ending with digits 1, 3, 7, and 9 and single prime number 5 are sufficient 

to produce all even numbers greater than two ending with digits 2, 4, 6, 8, and 0. Number of ways an even number 

created is directly correlated to the number of ways two or more odd numbers ending in digits 1, 3, 7, and 9, and 

number 5 are added to get resultant even number.  

 

With these theorems and corollaries in mind, we will describe an algorithm and steps that will help us achieve 

our goal of proving the Goldbach Conjecture next. Also, it is established that M136279841 is the largest known 

Prime number. Therefore, we can assume that all the prime numbers lower than prime number M136279841 have 

been found and verified by comparison of number test.   

 

3. Candidate Pairs 

Elementary subtraction identity of integers allows us to decompose any even number of arbitrarily large size 

into two odd numbers. Therefore, we will create pairs of odd numbers that will add to produce given starting even 

number 2N. We shall call them as candidate pairs odd numbers Q1 and Q2. In order to facilitate computation, we 

will list them in a specific order in which Q1 starts from the lowest value and Q2 starts from the highest value. 

 

Odd Number Pairs:  Serial No.    Q1     Q2 

1 1    2N – 1 

2 3    2N – 3 

3 5    2N – 5 

4 7    2N – 7 

5 9    2N – 9 

6 11                                         2N – 11 

7 13                                         2N -  13 

8 ●    ●    ● 

9 ●     ●     ● 

10 ●     ●     ● 

●     ●     ● 

  Last pair   2N – K    2N – K 

K is odd and there are N  2 pairs in all.  

 

In order to improve efficiency of computation, candidates are carefully selected such that the smallest number 

of pairs are tested for primality. Next, we will discuss steps that will enable us to discover a prime pair from a set 

of prime pairs. The prime pair is identified by performing square root test of primality. Also, the first identified 

prime pair found is such that one of the prime numbers is the largest possible prime, when added to the paired 

prime number that should result into a sum value, starting number 2N.    



4. Computational Procedure 

We will describe computer algorithm and procedure in great detail here because finding a prime number that 

satisfies the desired criteria is a NP complete problem. First step in computer program is to screen prime pairs 

from comprehensive pairs of odd number pairs for a specific starting even number 2N. The step ensures that we 

will perform square root tests only on  the eligible candidates which are numbers ending in 1, 3, 7, and 9 and 

which are not perfect powers of any prime number. The square root test is not performed on prime complements 

corresponding to number 2 because adding 2 to an odd prime will not result into sum 2N. However, the square 

root test is executed for testing a prime pair 5 and 2N – 5 along with prime pairs ending in 1, 3, 7, and 9. After a 

set of qualified prime pairs is created, square root prime test is performed on Q2 side of the pair first. When a 

prime number on Q2 side is found the square root test is performed for a corresponding prime number on Q1 side. 

If the number on Q1 side is Prime we have confirmed that both Q1 and Q2 numbers identified are primes. In case 

number on Q1 side is not prime, we should find next set of prime numbers on Q2 side and Q1 side by repeating 

the same steps. At this point our search for prime numbers should be complete. Next, we will describe specific 

steps in more detail. A flowchart of a Python program is displayed in Figure 4. 

  

 Step 1. Generate Candidate 

 Development of computer programs that test primality is a very sophisticated and expensive process. It is 

well known that modern computers are the most powerful and are of the highest speed suitable for this application. 

However, performing prime test on numbers of size M136279841 requires huge amount of memory array because 

the number is composed of millions of decimal digits. It is impossible to perform square root test on this size of 

number manually. Therefore, program code is written in languages such as Python that can implement very 

efficient data structures and can utilize features of object-oriented programming to optimize resource usage. One 

of the most useful features of computer program is efforts spent in its development can be utilized repeatedly. 

First, step in this program is to allocate memory to store an array of predetermined size of numbers. Then, the 

array is initialized to prime number of increasing sizes in Q1 array and decreasing sizes in Q2 array. The values 

of members in Q1 and Q2 arrays are initialized as follows.  

 

 

Prime Number Pairs:  Serial No.    Q1     Q2 

1 3    2N – 3 

2 5    2N – 5 

3 7    2N – 7 

4 11                                         2N – 11 

5 13                                         2N – 13  

6 ●    ●    ● 

7 ●     ●     ● 

8 ●     ●     ● 

●     ●     ● 

   

Last square toot test pair    P    2N – P 

 



                        P+1                  ●    ●    ● 

                        P+2                  ●    ●    ● 

                        P+3                  ●    ●    ● 

                                           ●    ●    ● 

  P+K       K    1 

K is odd and there are N  2 pairs in all. Also,  P = 2N.  

The rows exclude perfect powers of all prime numbers. Next, segment of program searches for first prime number 

in Q2 array by performing square root test. 

 

Step 2. Test Primality 

  The Section of program loop which performs square root test is capable of testing a member in array either 

Q2 or Q1 a prime or composite is called primality loop. The code performs modulo division operation sequentially 

dividing the Q2 member by primes in set Q1 array 3, 5, 7, … till P = 2N and checks for zero remainder. If 

remainder is zero in any division step than the member is composite. After that next lower number in array Q2 is 

tested for primality. When a prime number is found in Q2 array. The square root test is performed on 

corresponding prime number in Q1 array to make sure that the prime pair in both Q1 and Q2 arrays are primes. 

 

 The square root test plays a crucial role in primality test and is a very important test in proof of the 

Goldbach conjecture. Therefore, we should examine every edge case in the test with regards primality of numbers 

and critically analyze results of the test. For this purpose, we will calculate upper bound on number of square root 

tests performed in Q2 odd array. Total number of odd pairs in Q1 and Q2 array for any even number 2N is N. 

However, prime number only ends with 1, 3, 7, and 9. Therefore only 4 out of five odd numbers are tested. Further, 

from the highest element in  Q2 array we exclude square root test for 2N – 1 and 2N – 9 because 1 is neither  

prime nor composite and number 9 is composite.  Thus, upper bound on square root test  performed in elements 

of Q2 array is computed as follows. 

(4/5) ● (N – 1)    pairs of odd numbers ending with 1, 3, 7, and 9 for prime numbers greater than 10 

- 2              subtract for 2N – 1 and 2N  -  9  because 9 is composite and 1 is not prime 

+    3             add tests for 2N – 3, 2N – 5, and 2N – 7. 

 

However, in reality we have to perform tests loop are performed for P =  floor 2N  times. Therefore, we will 

replace (N -1) by P - 1.  The actual test loop count will be (4/5) ● (P – 1) + 1 – (all the powers of prime times 

contained in 2N). The most interesting edge case  the number 2N = Q2 + 1, here Q is the largest prime number 

known to date such as Luke Durant prime number M136279841. For our discussion here, we will designate it as 

number M. This is the number that can be tested for primality using the square root test. According to Goldbach 

conjecture the value of this even number can be expressed as the sum of two prime numbers contained in (4/5) ● 

(P – 1) + 1  row of odd numbers in Q1 and Q2 arrays. Therefore, upper bound for the even number obeying 

Goldbach conjecture which are tested and verified is M + 1. If we account composition of both Prime and 

Composite sum of any two elements, one from each array Q1 and Q2, theoretically we can get result of  2M. 

Therefore, upper bound of a pair of numbers tested for Goldbach conjecture verification by applying square root 

test is 2M.  

 



Step 3. Validation 

In this section, we will investigate limitations of our algorithm to identify a prime number whose value is 

higher than the largest known prime. The largest known prime number  is 2^(136,279,841) – 1, also known as 

M136279841. It has 41,024,320 digits and was discovered in October 2024 by Luke Durant, a contributor to the 

Great Internet Mersenne Prime Search (GIMPS) [3]. One problem, we run into while applying square root 

algorithm is what if the starting even number 2N is greater than square of M136279841. In that case we are 

attempting to discover a prime that was not discovered before the program is ran. A question is How do we know 

that a prime number exists one that is greater than M136279841. Therefore, we will prove that many prime 

numbers exist which are larger than Luke Durant number. Our proof is based on a popular and a very good 

approximation prime counting function (x) = x/[ln (x)]. The function counts number of prime numbers lower 

than number x. 

 

For our proof, we will use a slightly modified version of the prime counting function. We are interested in 

counting prime numbers lower than a number which is a whole power of number 10. Also, we will modify notation 

of (x) to (n), where n is the exponent of the power of 10. Further, we will change base of logarithm in 

denominator from e to 10. Therefore, updated prime counting function for a number 10n  is 

Prime counter (n) = 10n /[(log 10n) / log e] = 0.4343 10n / (log 10n) 

 

For a number 10(n+1), (n + 1) = 0.4343 10n+1 / (log 10n+1) and 

Also, for number 10n (n) = 0.4343 10n / (log 10n)  Let us take ratio (n + 1) / (n) 

(n + 1) / (n) = 0.4343 10n+1 / (log 10n+1)  0.4343 10n / (log 10n) 

                        = 10 ● 10n / (n + 1) log 10  10n / n log 10 

                        =  10 n/(n + 1) = 10/(1 + 1/n) 

We wish to find the value of this ratio as n approaches ∞. Therefore, we will take limit of above expression 

Lim [(n + 1) / (n)] = Lim 10/(1 + 1/n) = 10 > 1.  

 n -> ∞      n -> ∞ 

Thus, we have proved that ratio of prime count between a number of next larger power of 10 to previous 

power of ten is 10. The number of prime counts increases ten-fold for each ten-fold increase in size of a number. 

In essence our square root test is guaranteed to find higher prime number because they always exist. We can 

substantiate our conclusion by emphasizing fact principle of reoccurrence which says that number pattern 

composed of interleaved Prime/Composite should continue indefinitely as long as the set of numbers remains 

unchanged. Further, primality of a number is distinguishing feature and is a fundamental property of decimal 

number system. Therefore, our proof satisfies and meets required generalization criteria. Moreover, examination 

of prime number pattern reveals a periodicity. The distance between successive prime numbers ending with same 

digit such as 11 and 31, 31 and 41 is always a multiple of ten. Similarly distances between prime number ending 

with digit 3 such as 13, 23, 43, 53, 73, 83, 103 is either 10, 20, 30, 40, and so on. Therefore, we stipulate that 

probability of finding a prime number for an arbitrarily large size number is certain.  

 

 Therefore, successful completion of primality test and execution of our algorithm proves that for an 

arbitrarily large size even number the Goldbach Conjecture holds good. Furthermore, by proving strong 

conjecture, we, have also proven weak conjectures because an arbitrarily large size odd number can be split into 



an even number and prime number 3. Therefore, every odd number greater than seventeen can be expressed as 

the sum of three distinct prime numbers.  

 

5. Computational Considerations 

In twenty first Century Computer Systems are the most valuable resource that provide optimum solution to 

problems of prime number processing complexity. One of the major problems in performing square root tests is 

in division operation, we encounter operands of enormous size numbers. For instance, it requires forty-one million 

twenty-four thousand three hundred twenty digits to  represent Duran Prime number M136279841 in ten base 

number system [12]. Therefore, size of memory arrays allocated to perform square root test increases 

exponentially. Clever programmers should employ run time variable member size arrays allocation scheme and 

object-oriented programming  features to improve throughput of computers and speed.  

 

 Second problem is performing division operation on such large size operands. Very few computers hardware 

and software systems are designed to handle and perform arithmetic operations on this size operands. Further, 

revision of IEEE floating point standards are required to address needs specific for this application. Moreover, 

for increasing speed of computation, thousands of processors must concurrently execute programs and exchange 

results without any errors. Therefore, special programs are developed to confirm results of these tests. Since, it is 

very difficult to estimate financial tangible gains from this type of project, it is imperative that investment 

contribution should come from mathematics community globally. We anticipate that this effort will bring people 

together in sharing their resources for mutual benefit.  

 

6. Concluding Remarks 

This white paper presented an algorithm to find two Prime numbers which satisfied famous Goldbach 

Conjecture. The algorithm partitions odd numbers into prime pairs in a hierarchy and applies square root test 

recursively to find at least one pair of primes. Further, segmentation of even into odd numbers ensures that primes 

found add to a sum equals to the starting even number.  I hope that this white paper inspires to find even larger 

size prime numbers because algorithm presented by us should improve search of prime numbers larger than prime 

number discovered so far. We will appreciate any constructive comments and suggestion from reviewing 

community. This will help us improve proofs for this conjecture as well as other problems in number theory.  
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                         TABLE 1: Number of Primes and average gaps vs Powers of 10. 

Power of 10 (x)  accurate Average Gap 

    
10 = 101 4 1.25 

 
100 = 102 25 4 

1000 = 103 168 5.95238095 
 

10000 = 104 1229 8.13669650 
 

100000 = 105 9592 10.42535446 
   
1000000 = 106 78498 12.73917807 

 
10000000 = 107 664,579 15.04712006 

100000000 = 108 5,761,455 17.35672673 

1000000000 = 109 50,847,534 19.66663713 

10000000000= 1010 455,052,511 21.97548581 

100000000000= 1011 4,118,054,813 24.28330961 

1000000000000= 1012 
 
10000000000000= 1013 
 

37,607,912,018 

346,065,536,839                                                           

26.59014942 

28.89626078 

100000000000000= 1014  3,204,941,750,802             
 

 31.20181513 

1000000000000000= 1015                          29,844,570,422,669   
 

 33.50693228 

10000000000000000= 1016                         279,238,341,033,925   
 

 35.81170108 

100000000000000000= 1017                       2,623,557,157,654,233   
 

 38.11618882 

1000000000000000000= 1018                    24,739,954,287,740,860        40.42044655 

10000000000000000000= 1019                   234,057,667,276,344,607        42.72451365 

100000000000000000000= 1020                 2,220,819,602,560,918,840           45.02842099 

1000000000000000000000= 1021               21,127,269,486,018,731,928        47.33219315 

1000000000000000000000= 1022               201,467,286,689,315,906,290             49.63584989 

10000000000000000000000= 1023             1,925,320,391,606,803,968,923   
 
100000000000000000000000= 1024          18,435,599,767,349,200,867,866    
 
1000000000000000000000000= 1025        176,846,309,399,143,769,411,680                         

 

 

 
 

51.93940730 

  54.24287859 
  

56.54627475 

10000000000000000000000000= 1026   1,699,246,750,872,437,141,327,603               58.88496049 

1000000000000000000000000000=1027 16,352,460,426,841,680,446,427,399       61.15287693 

1000000000000000000000000000=1028 157,589,269,275,973,410,412,739,598  63.45609720 

Source: https://t5k.org/howmany.html#table   



 

 

 

 

 

         
 

          

         

         

         

         

         

         

         

         

         

         

          

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

          

 

     

         

           

Figure 1: Number powers of ten x (upto 1028) vs. Prime counts (x) on a log scale. 
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Figure 2: Number powers of ten x (upto 1028) vs. Average gap between Primes.  

  

 

 

 
Figure 3: Prime number powers of ten (upto 1020) vs. Maximum gap  

                       Source wikipedia: https://en.wikipedia.org/wiki/Prime_gap  
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Figure 4: A flowchart that implement prime search algorithm. 
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