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         Abstract 

 

In Mathematics, Collatz Conjecture is concerned with a peculiar shrinking number pattern 4, 2, and 1, end 

result after specified instructions are performed. The stream of numbers, a sequence is generated as follows. You 

begin with a positive integer n. Next, you perform set of operations depending on the selected number being even 

or odd. First, if the number is even,  you divide it by 2 repeatedly till you get an odd number. Second, if the 

number is odd, you multiply it by three and add one. Since three times any odd number plus one is always even, 

you divide it by 2. You repeat first and second operations indefinitely. The conjecture states that regardless of 

value of n, the end sequence of numbers generated after several executions of first and second step is always 4, 

2, and 1. For instance,  starting with odd number n = 13, you get sequence 40, 20, 10, 5, 16, 8, 4, 2, and 1. Also, 

for starting with an even number n = 36, you get sequence 18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 

5, 16, 8, 4, 2, and 1. In this white paper, author applies pattern analysis technique to prove the conjecture. 
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1. Introduction 

For extremely humongous size numbers such as 2^71 = 2305,8430,0921,3693,952 decimal, validation that 

the number converges under Collatz rules is a challenging and formidable task. Even for the most powerful 

computer system it takes several days of computation time and investment of manpower/funding the effort. As of 

2025, it is verified that all numbers up to 2^71 have converged to 4, 2, 1 sequence at the conclusion of Collatz 

rules. We will refer to 4, 2, 1 sequence as Collatz sequence in our discussion. It would be of interest to see how 

the number of steps grow as compared to size of numbers that have the most steps before Collatz sequence is 

generated. In Table 1, we have summarized number size as a multiple of powers of tens vs. number of steps. It is 

easy to see that even a Python program to perform execution and validation for Collatz sequence is 

computationally exhaustive problem. Further, according to information in Table 1, Collatz conjecture is verified 

for numbers of size a trillion, it is lot lower than verification of Goldbach Conjecture Proof. It is reported that 

Goldbach Conjecture is proven for number of size 4 x 10^18. Therefore, it is imperative that we develop a 

generalized proof of the conjecture for unlimited size of starting number odd or even.  

 

2. Preliminaries 

The Collatz conjecture specifies iterations of integer odd or even under application of a simple function 

P(n). The function states: “Starting from any positive integer n, repeated operation sequence specified in P(n) 

will end in number 1. Thereafter, the number sequence will loop through 1, 4, 2, 1…endlessly. [Lagarias, 2010]. 

 

Let us develop a description of Collatz function P(n) notation. To ensure the process, we define basic terms odd 

and even integers. 



A positive integer n is characterized as an even integer E when  n mod (2) = 0. Further, an even integer n 

implies that E = 2M,  M is a positive integer greater than 0. 

A positive integer n is categorized as an odd integer O when n mod (2)  = 1. With the same token as an even 

integer, for odd values of n, O = 2M + 1. 

 

With this nomenclature for odd and even integers in mind, we shall formally define the Collatz function P(n) 

P(n)          =        n/2 if n of type E 

                           (3n + 1) if n is of type O 

 

The Collatz function is named after mathematician Lohar Collatz in 1937. Though, in recent times 

Collatz conjecture is verified using modern Computers with vast amount memory and the fastest 

processing speeds, very little progress has been made for proving the conjecture. Several proofs are 

reported to date but none of them are accepted by mathematics community at large [Marshall 2022]. 

This inspired the author to develop a convincing proof for Collatz conjecture. First, we will prove the 

conjecture by heuristic arguments. Then we will describe formal proof in its entirety. For sake of 

convenience, we will refer P(n) operations: division of even number by 2  as step a and multiplication 

of an odd number by 3 and subsequent addition of 1 as step b. Further, we will partition our proof by 

classifying even and odd number types into subcategories: 1). Numbers those are perfect powers of 2, 

3, 5, and other primes such as 2^a, 3^b, etc. and 2). Numbers those are multiples of odd and even 

primes.  

 

First, we will explain why shrinking number sequence 4, 2, and 1 occurs when numbers are decaying. An 

obvious reason is if at any time during execution of step a or b if we run into a number that is perfect power of 

two, we will terminate our sequence to 1 by repeated application of step a, divide by two. In neither step a or b, 

we are dividing by number other than 2. Therefore, even if our starting number is perfect power of other numbers 

such as 3^b, 5^c, 7^d, and etc., we can not develop sequence such as 27, 9, 3, 1 or 125, 25, 5, and 1 or 343, 49, 7, 

and 1. Next, we will explain why number sequence is always converges in a more general case of starting number 

even or odd.  

 

Let us consider a case where starting number is even  E = 2N, N is an integer. Repeated execution step a will 

always produce an odd number O.  In the worst case,  O = 2M + 1 after first iteration. Next step will be always b, 

where we multiply the number by three and add one. Notice that after step b, the result will be always an even 

number. Therefore, we are forced to execute step a. Examination of execution sequence indicates that we will 

cycle through atleast one even and odd pair of numbers. Our result will be close to a number 2N ★ ¾  because 

division by 2 occurs twice where as multiplication by 3 occurs once.  

 

Next, we consider a case where the starting number is odd  O = (2M + 1). This time,  we execution step b 

first, where we multiply the number by three and add one. However, this will always produce an even number. 

The reason is  when you multiply two odd numbers, 3 and starting number, you get an odd number. After you add 

1 in the step you get even number, whose value is close to (2M + 1) ★ 3. Next, we divide the sum by 2 in step a. 

we get a number value close to (2M + 1) ★ 3/2.  This number could be even or odd that has equal probability. If 



the number is odd in the worst case, the number will grow temporarily but after a cycle or two it will decay 

because it will be even after step b. Next, for even number,  we execute step a. Examination of execution sequence 

indicates that we will cycle through atleast one odd and even pair of numbers. In that case the result will be close 

to a number (2M + 1) ★ ¾. 

 

In summary, on the average, the number will shrink after k iterations of odd and even sequences by a factor 

of (3/4)^k < 1, k > 1. This conclusion does not depend on type of starting number even or odd. In general, starting 

number E or O is divided by two more frequently while multiplied by three sparingly. Further, when you apply 

step b, some of the even numbers happens to be  multiples of 4, 8, 16, 32, and etc. Therefore, indefinite growth 

of number is inhibited, leading to collapsing sequence of numbers. An obvious reason is  2^k  3 for k > 1.  

 

To prove 2nd part of conjecture statement we inspect the range of values associated with given number E=(2N)  

even or given number  O = (2M + 1) odd while we execute steps a and b. It is obvious that there are numbers S 

that are exact multiples of whole powers of number 2 which are all even. Also, there are numbers T that are exact 

multiples of whole powers of 3 which are odd numbers. However, powers of 3 are sparser than powers of 2, which 

is a smaller base than base 3. Therefore, we can always find a number S that is larger than number O odd or E 

even such that S would converge into 16, 8, 4, 2, 1 series for any arbitrary large size number E or O.  Our argument 

is if conjecture holds good for S it should hold for E and O because S > E and O both. Furthermore, S is undergoing 

decaying sequence of numbers upon repetitive execution of operations stated in steps a.  

 

Next, we will describe formal proof of the conjecture. In order to improve reading, we have partitioned our 

proof in three Lemmas. First, lemma proves that for any odd or even starting number recursive application of P(n) 

will not cause a sequence that repeats (loop) the same number again and again. In second lemma, we prove that 

growing sequence after application of P(n) function is impossible. In the third lemma, we prove that only sequence 

4, 2, and 1  is possible. Under no condition other decreasing sequence such as 27, 9, 3, and 1 or any other multiples 

of prime in decreasing order is possible.  

 

3. Formal Proof 

First, we will show that for starting number even E and odd O, Collatz function never enters into a loop 

indefinitely. Also, it can never produce sequence of numbers such as 2, 2, 2, … or 3, 3, 3…, or n, n, n, … for any 

value of even number E or odd number O.  

 

 Lemma 1. Indefinite repeat number sequences are not possible. 

 

 If starting number even, after step a N = E/2. 

 However, E/2 = E will  result in value E = 0, not possible because E is positive integer E  1 

 If starting number is odd, after step b, N = 3 ● O + 1 

 However, 3 ● O + 1 = O will result in value of O = -1/2 not possible because O is positive integer O   1 

 



Next, we will explain, why at the end of several passes of Collatz function for an odd or an even starting 

number always results in a diminishing number sequence 4, 2, and 1.  

 

Lemma 2. Only decaying sequences are possible. 

 

For even number E is reduced to odd number after k successive divisions by number 2.  

Step a. E reduced by a factor 2, 4, 8, 16 etc. k  1 definition of even number. 

E  2^k = (2M + 1) = Odd number O = E ● (1/2)k,  k > 0 

Every even number E is transformed to odd number O after step a. Next execute b. 

 

Step b.  Multiply O by 3  and add 1 New even = 3 ★ O + 1 

New Even = 3 ★ (2M + 1) + 1 = 6M + 4 always even = 2 (3M + 2) 

Next, execute step a divide by 2 we get 2(3M + 2)/2 = 3M + 2 and iterate the function P(n).  

First time after step b when you execute a, notice that (3M + 2)  3 = M + 2/3 which is not a whole number. 

Therefore, 3M + 2 is not divisible by 3. This is the main reason that decaying sequence of numbers 81, 27, 9, 

3, and 1 is not possible after step b. Based on results of multiple execution of steps a and b we can conclude 

that starting even number E is reduced by a factor of  3l/2(l + k)  < 1 for k > 0 Therefore, end result after 

successive execution of P(n) for an even starting number will be S = E ● (3/2)l ● (1/2)k = E ● 3l/2(l + k) 

 

We can perform similar analysis for the case where we start with odd number O. In that case we will 

perform step b first and after l cycles of growth we will decay for k cycles performing step a. Again, the final 

number we get  is S = O ● (3/2)l ● (1/2)k = O ● 3l/2(l + k). The starting number O is again reduced by factor 

3l/2(l + k)  < 1 for k > 0 Thus, we have discovered that for starting number even E or odd O, the number will 

shrink by the same factor 3l/2(l + k)  < 1. The fact that both cases, starting number odd or even results in reduction 

of the number by the same factor, it is possible that sequence will terminate in form 4, 2, and 1. A rigorous 

proof exist [Li 2022] which shows that upon recursive application of P(n) the number sequence terminates in 

form 4, 2, and 1 by method of induction. However, the proof does not show why other sequences are not 

possible such as 27, 9, 3, and 1 or 343, 49, 7, and 1.  

 

For the sake of completeness, further examination of decaying sequence created by specific odd or even 

starting numbers during execution of P(n) steps is required. Specifically, we will focus, recursive execution 

of step b in P(n) for the case of an odd starting number.  

 

Lemma 3. Only 4, 2, and 1 sequence is possible upon recursion of P(n). 

 

Let us consider a case starting number is perfect power, two raised to an integer  4. In that case, we are forced 

to perform step a repeatedly. This results in shrinking sequence of numbers 8, 4, 2, and 1 naturally. However, 

this repeated execution of step b is not guaranteed  in case starting number is odd whole power of number 3. 

In fact, decaying sequence 27, 9, 3, and 1 can never occur because we proved that 3M + 2 is not divisible by 

3. It is interesting to note that 3M + 2 value could result in an odd number divisible by  5. This could result in 



number sequence such as 40, 20, 10, 5 in step a from step b. But 3 ● 5 + 1 = 16 from step b cause number 

sequence to converge 4, 2, and 1 from a. 

 

Next, we will explore  various possibilities for values of number 3M + 2 during execution of step b. If M 

is even, 3M + 2 has even value therefore next step will be a, making starting number small  O ● 3l/2(l + k). If 

M is odd 3M + 2 will be odd that has factors greater than 3. In that case the starting number will be amplified 

by factor of 3/2 few times. Eventually, 3M + 2 will have a value that is multiple of ten. This value will lead 

to 20, 10, 5 values in step a and then value 16 from step b. Finally, the sequence will end into 8, 4, 2, and 1. 

 

Further, if we examine numbers developed from sequence 3M + 2 by assigning integer values to M we 

find the following sequence 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 

71, 74, 77, 80 and so on. The sequence skips multiple of  numbers two times for instance 11 is part of sequence 

but 22 and 33 are not. In fact, next multiple of member in sequence is multiplied by (3p + 1)  and displacement 

of the next term is (3p + 2) , here p = 1, 2, 3, …The number 8 is part of sequence but 16 and 24 are not. This 

skip feature of 3M + 2 sequence inhibits decaying sequence such as 27, 9, 3, 1 and 125, 25, 5, 1. Further, the 

displacement term is higher distance away then (3n + 1) amplification value in step b of P(n). Mathematically, 

the skip in the pattern developed by step b can be observed by testing consecutive values of M.  

 

For even values of M, (3M + 2) attains an even number directs us to step a. For odd values of M if we 

perform division by 3, 5, 7, 9, 11, 13, 15, 17 we find a sequence that does not loop for reasons stated below.  

 

(3M + 2)  3  = X is never divisible by 3 for odd or even values of M 

(3M + 2)  5  = X is divisible by 5  that leads to sequence 5 * 3 + 1 = 16 even 8, 4, 2, 1 

(3M + 2)  5  = Y is divisible by 10 that leads to 80, 40, 20, 10, and 5. 

(3M + 2)  7  = Z is never a whole number for two consecutive loops of step b. 

●  ●  ● 

●  ●  ● 

●  ●  ● 

●  ●  ● 

 

(3M + 2)  A = not a whole number for A > 5 for two consecutive loops of step b.  

 

Moreover, a close examination of numbers created by 3M + 2 Arithmetic sequence reveals successive 

terms are relatively prime to each other. It means that ratio of next term in the sequence to present term is 

between one and two, not a whole number.  i. e. 1 < (3M + 5) / (3M + 2) < 2. In fact, the next whole multiple 

of (3M +2) appears in the sequence only after 3M + 2 terms. The skip in multiple of present term leaves gaps 

in continum of multiples of terms relative to its own position. This is the primary cause the sequence can not 

terminate with any other pattern except reduction in value either from multiples of two or multiples of five. 

Therefore, other converging sequence does not occur during repeated execution of step b. Thus, we have 

proved both parts of the conjecture by heuristic arguments. 

 



4. Computational Considerations 

The proof can easily be verified when we implement steps of Collatz Conjecture on a Computer which uses 

binary arithmetic number system. For instance, in Computer arithmetic division by 2 is achieved, shift right one 

place binary number and zero fill most significant bit. Also, multiplication by 3 is accomplished by shifting left 

given number once and adding the same number once to shifted result. By observing bit sequence of results one 

can conclude that requirement for proof of the conjecture is satisfied. Also, size of the number is extensible to any 

number of bits because one can store very large size numbers in an array and computer Arithmetic Logic Units 

(ALU) processes numbers in floating point decimal system according to IEEE Standard 754-1985.   

 

5. Concluding Remarks 

This white paper presented a simple and elegant proof of Collatz Conjecture by applying pattern analysis 

method and heuristic arguments. We will appreciate any constructive comments and suggestion from reviewing 

community. This will help us improve proofs for this conjecture as well as other problems related to Collatz 

conjecture.   
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                         TABLE 1: Number below Power of 10 vs. Convergence Steps  

Power of 10 Actual Number No.  of steps  

    

10 = 101 9 19 

100 = 102 97 118 

1000 = 103 871 178 

10000 = 104 6171 261 

100000 = 105 77031 350 

   
1000000 = 106 837799 524 

10000000 = 107 8400511 685 

100000000 = 108 63728127 949 

1000000000 = 109 63728127 986 

10000000000= 1010 9780657630 1132 

100000000000= 1011 75128138247 1228 

1000000000000= 1012 989345275647 1348 

Source: Collatz Conjecture, wikipedia 

Last Number A284668 in the OEIS 
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